第10年
4006816680转305
便携式调制叶绿素荧光仪PAM-2100

参考价格:索要报价
产品型号:ZQ-WALZ007 (PAM-2100)
所在地区:华东 上海
上架时间:2018-01-18
4006816680-305
与企业取得联系时请告知该信息获取自中国教育装备采购网
我要分享
详细说明

PAM-2100——野外光合作用研究的首选仪器
Schreiber教授因发明PAM系列调制叶绿素荧光仪而获得首届国际光合作用协会(ISPR)创新奖

1983年,WALZ公司首席科学家、德国乌兹堡大学的Ulrich Schreiber教授设计制造了全世界第一台调制荧光仪——PAM-101/102/103,使在自然光下测量叶绿素荧光成为现实,解决了科学界近50年的技术瓶颈。PAM-101/102/103迅速在植物生理、生态、农学、林学、水生生物学等领域得到广泛应用,出版了大量高水平研究文献。但该仪器比较笨重,不易带到野外。

1992年,WALZ公司首席科学家、调制荧光仪发明人、德国乌兹堡大学的Ulrich Schreiber教授设计制造了全世界第一台便携式调制荧光仪——PAM-2000,并且在植物生理生态学等科研领域得到广泛应用,此后十几年中成为全球最畅销的调制荧光仪。

2003年,WALZ公司在保留PAM-2000所有功能和优点的基础上,结合最新技术,将PAM-2000升级到了PAM-2100

便携式调制叶绿素荧光仪PAM-2100


系统描述
PAM-2100采用了独特的调制技术饱和脉冲技术,从而可以通过选择性的原位测量叶绿素荧光来检测植物光合作用的变化。PAM-2100的调制测量光足够低,可以只激发色素的本底荧光而不引起任何的光合作用,从而可以真实的记录基础荧光Fo。PAM-2100具有很强的灵敏度和选择性,使其即使在很强的、未经滤光片处理的环境下(如全日照甚至是10000 μmol m-2 s-1的饱和光强下)也可测定荧光产量而不受到干扰。因此,PAM-2100不但适合在实验室人工控制的环境下测量,还可以在自然环境中甚至是强烈的全光照条件下开展野外科学研究。

PAM-2100是非常便携、强大的测量系统,它将各种光学和电子元件组装在一个24 cm×10.5 cm×11 cm的外壳中。测量光由655 nm的发光二极管(LED)发出,可在低频(600 Hz)和高频(20 kHz)间自动切换。光化光(光合生物实际可吸收利用进行光合作用的可见光)由卤素灯(白光)或红光LED(655 nm)提供。远红光(735 nm,促进光系统I迅速消耗掉在PQ处累积的电子)由LED发出。

PAM-2100的按键操作非常简单。基础测量只需单健操作。数据在内置电脑中自动分析、存储并且在显示屏上显示。除了“参数窗”外,在“动力学窗”还可显示曲线的实时变化

PAM-2100利用光纤进行信号传输。光适应叶夹2030-B(专利产品)上配备微型光量子/温度传感器,可在记录荧光信号的同时,同步记录光合有效辐射(PAR)和温度变化。

PAM-2100内设10个标准Run(预先编好的间隔一定时间并按一定顺序执行特定命令的程序),用户只需一次按键就可进行复杂的实验。用户还可对这些标准Run进行编辑得到自己的User-Run(数量不限),来满足特殊的实验需要。
PAM-2100主机可以直接连接电脑(圆口)键盘,在野外现场,可以根据实验需要,不需电脑就可以进行特殊程序的编辑

PAM-2100还可以设定单机操作软件DA-2100自动间隔一定时间执行某个Run或User-Run,而Run是可以无限扩展的,因此,可以说PAM-2100的功能几乎可以无限扩展。只要将主机和叶夹(均可固定在三角架上)固定好,按一次按键,(人不在现场看守)仪器可以自动进行非常复杂的测量过程

此外,PAM-2100主机还可以连接电脑显示器或投影仪放大显示,非常适合进行教学使用。


便携式调制叶绿素荧光仪PAM-2100特点
1) 声誉卓著的PAM-2000的升级版
2) 精巧、准确、迅速、操作简便的高级光合作用检测设备
3) 可单机操作(采用内置电脑,DA-2100软件记录),可连接外置电脑操作(Windows操作软件PamWin)
4) 便携式设计,带大屏幕液晶显示屏(可显示曲线变化)和20个按键
5) 强大的数据收集、分析和存贮功能
6) 可以预先编写和设定程序,进行特殊研究目的测量
7) 内置锂电池可满足长时间野外工作需要,并可连接外置12 V电池
8) 多种叶夹可供选择,专利设计的光适应叶夹2030-B可同时记录PAR和温度变化
9) 光源选择:自然光,内置光源(提供测量光、光化光、饱和脉冲和远红光),可选外置卤素灯光源(特别适合野外研究)


功能
1) 可测荧光诱导曲线的快速上升动力学O-I-D-P相和O-J-I-P相
2) 可测荧光诱导曲线的慢速下降动力学并进行淬灭分析(Fo, Fm, Fv/Fm, F, Fm, Fo’, dF/Fm’, qP, qN, NPQ, rETR等)
3) 可测光响应曲线和快速光曲线(RLC)
4) 仪器内置一系列标准实验(Run1~Run10),用户可对其进行编辑建立自己的User-Run
5) 可在线检测植物、微藻、地衣、苔藓等的光合作用变化
6) 单机操作功能强大,特别适合野外操作,实验室内单机操作时可连接电脑显示器或投影仪放大显示


应用领域
仪器设计特别适合野外使用,可用于研究光合作用机理、各种环境因子(光、温、营养等)对植物生理状态的影响、植物抗逆性(干旱、冷、热、涝、UV、病毒、污染、重金属等)、植物的长期生态学变化等。在植物生理学、植物生态学、植物病理学、农学、林学、园艺学、水生生物学、环境科学、毒理学、微藻生物技术、极地植物光合作用研究等领域有着广泛应用。

便携式调制叶绿素荧光仪PAM-2100


10个标准Run
Run 1:测量实际量子产量Yield(ΔF/Fm’)
Run 2:测量最大量子产量Fv/Fm
Run 3:记录诱导曲线并进行淬灭分析(采点率10 ms/点)
Run 4:记录诱导曲线并进行淬灭分析(采点率30 ms/点)
Run 5:qN 的驰豫动力学
Run 6:快速诱导动力学O-I-D-P相(线性时间)
Run 7:快速诱导动力学O-J-I-P相(对数时间)
Run 8:光响应曲线(需76 min)(稍加编辑即可测量快速光曲线)
Run 9:光响应曲线(需33 min)(稍加编辑即可测量快速光曲线)
Run 10:仪器自检

用户可根据实验需要,自行修改或编制程序;如需帮助,请来电咨询!

无限扩展的编程功能,单机操作功能更加强大!!!

便携式调制叶绿素荧光仪PAM-2100

单机操作时记录的荧光诱导曲线加淬灭分析、以及相关荧光参数的变化

 

便携式调制叶绿素荧光仪PAM-2100

单机操作时记录的快速荧光诱导动力学曲线



技术参数
测量光
:红色发光二极管(LED),650 nm,标准强度0.1 μmol m-2 s-1 PAR;调制频率0.6或20 kHz,自动转换。
光化光
 红色LED,665 nm,最大连续光强600 μmol m-2 s-1 PAR
 卤素灯,8V/20W,最大连续光强8500 μmol m-2 s-1 PAR
饱和脉冲:卤素灯,8V/20W,最大饱和闪光强度μmol m-2 s-1 PAR。
远红光:LED,730 nm,最大强度15 W m-2。
信号检测:PIN-光电二极管,带短波截止滤光片(λ>710 nm);选择性锁相放大器(专利设计)。
数据存储:128 MB
测量参数:Fo, Fm, Fm’, F, Fo’, Fv/Fm(max. Yield), ΔF/Fm’(Yield), qP, qN, NPQ, ETR, PAR和叶温等。

部分文献

1. Yin CY, Berninger F, Li CY, 2006. Photosynthetic responses of Populus przewalski subjected to drought stress Photosynthetica 44: 62-68.
2. Yaronskaya E, Vershilovskaya I, Poers Y, Alawady AE, Averina N, Grimm2 B, 2006. Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Planta: in press.
3. Yang Y, Sulpice R, Himmelbach A, Meinhard M, Christmann A, Grill E, 2006. Fibrillin expression is regulated by abscisic acid response regulators and is involved in abscisic acid-mediated photoprotection Proc. Natl. Acad. Sci. USA 103: 6061-6066.
4. Veres S, Tóth VR, Láposi R, Oláh V, Lakatos G, Mészáros I, 2006. Carotenoid composition and photochemical activity of four sandy grassland species. Photosynthetica 44: 255-261.
5. Subrahmanyam D, Subash N, Haris A, Sikka AK, 2006. Influence of water stress on leaf photosynthetic characteristics in wheat cultivars differing in their susceptibility to drought Photosynthetica 44: 125-129.
6. Rautenberger R, Bischof K, 2006. Impact of temperature on UV-susceptibility of two Ulva (Chlorophyta) species from Antarctic and Subantarctic regions. Polar Biology: in press.
7. Naidoo G, 2006. Factors contributing to dwarfing in the mangrove Avicennia marina. Annals of Botany 97: 1095-1101.
8. Lizana C, Wentworth M, Martinez JP, Villegas D, Meneses R, Murchie EH, Pastenes C, Lercari B, Vernieri P, Horton P, Pinto M, 2006. Differential adaptation of two varieties of common bean to abiotic stress: I. Effects of drought on yield and photosynthesis. Journal of Experimental Botany 57: 685-697.
9. Häubner N, Schumann, Karsten U, 2006. Aeroterrestrial microalgae growing in biofilms on facades—response to temperature and water stress. Microbial Ecology: in press.
10. Bertamini M, Muthuchelian K, Nedunchezhian N, 2006. Shade effect alters leaf pigments and photosynthetic responses in Norway spruce (Picea abies L.) grown under field conditions. Photosynthetica 44: 227-234.
11. Yang X, Lu C, 2005. Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants. Physiologia Plantarum 124: 343-352.
12. Wodala B, Deák Z, Vass I, Erdei L, Horváth F, 2005. Nitric oxide modifies photosynthetic electron transport in pea leaves. Acta Biologica Szegediensis 49: 7-8.
13. Wen X, Qiu N, Lu Q, Lu C, 2005. Enhanced thermotolerance of photosystem II in salt-adapted plants of the halophyte Artemisia anethifolia. Planta 220: 486-497.
14. Wen X, Gong H, Lu C, 2005. Heat stress induces an inhibition of excitation energy transfer from phycobilisomes to photosystem II but not to photosystem I in a cyanobacterium Spirulina platensis. Plant Physiology and Biochemistry 43: 389–395.
15. Wen X, Gong H, Lu C, 2005. Heat stress induces a reversible inhibition of electron transport at the acceptor side of photosystem II in a cyanobacterium Spirulina platensis. Plant Science 168: 1471–1476.
16. Tang Y, Wen X, Lu C, 2005. Differential changes in degradation of chlorophyll–protein complexes of photosystem I and photosystem II during flag leaf senescence of rice. Plant Physiology and Biochemistry 43: 193-201.
17. Takabayashi A, Kishine M, Asada K, Endo T, Sato F, 2005. Differential use of two cyclic electron flows around photosystem I for driving CO2-concentration mechanism in C4 photosynthesis. Proc. Natl. Acad. Sci. USA 102: 16898-16903.
18. Souza GM, Ribeiro RV, de Oliveira RF, Machado EC, 2005. Network connectance and autonomy analyses of the photosynthetic apparatus in tropical tree species from different successional groups under contrasting irradiance conditions. Revista Brasileira de Botanica 28: 47-59.
19. Siffel P, Santrucek J, 2005. Diurnal course of photochemical activity of winter-adapted Scots pine at subzero temperatures Photosynthetica 43: 395-402.
20. Shirke PA, Pathre UV, 2005. Influence of leaf-to-air vapour pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora. Journal of Experimental Botany 55: 2111-2120.
21. Rassadina VV, Usatov AV, Fedorenko GM, Averina NG, 2005. Activity of the system for chlorophyll biosynthesis and structural and functional organization of chloroplasts in a plastome en:chlorina-5 sunflower mutant Russian Journal of Plant Physiology 52: 606-615.
22. Pérez-Priego O, Zarco-Tejada PJ, Miller JR, Sepulcre-Cantó G, Fereres E, 2005. Detection of water stress in Orchard trees with a high-resolution spectrometer through chlorophyll fluorescence in-filling of the O2-A band. IEEE Transactions on Geoscience and remote Sensing 43: 2860-2869.
23. Penuelas J, Llusia J, Asensio D, Munne-Bosch S, 2005. Linking isoprene with plant thermotolerance, antioxidants and monoterpene emissions. Plant Cell and Environment 28: 278-286.
24. Kosourov S, Makarova V, Fedorov AS, Tsygankov A, Seibert M, Ghirardi ML, 2005. The effect of sulfur re-addition on H2 photoproduction by sulfur-deprived green algae. Photosynthesis Research 85: 295-305.
25. Jeon M-W, Ali MB, Hahn E-J, Paek K-Y, 2005. Effects of photon flux density on the morphology, photosynthesis and growth of a CAM orchid, Doritaenopsis during post-micropropagation acclimatization. Plant Growth Regulation 45: 139-147.
26. Ifuku K, Yamamoto Y, Ono T-a, Ishihara S, Sato F, 2005. PsbP protein, but not PsbQ protein, is essential for the regulation and stabilization of photosystem II in higher plants. Plant Physiology 139: 1175–1184.
27. Havaux M, Eymery F, Porfirova S, Rey P, Dormann P, 2005. Vitamin E protects against photoinhibition stress in Arabidopsis thaliana. The Plant Cell 17: 3451-3469.
28. Guéra A, Calatayud A, Sabater B, Barreno E, 2005. Involvement of the thylakoidal NADH-plastoquinone-oxidoreductase complex in the early responses to ozone exposure of barley (Hordeum vulgare L.) seedlings Journal of Experimental Botany 56: 205-218.
29. Feild TS, Sage TL, Czerniak C, Iles WJD, 2005. Hydathodal leaf teeth of Chloranthus japonicus (Chloranthaceae) prevent guttation-induced flooding of the mesophyll. Plant Cell and Environment 28: 1179-1190.
30. Feild TS, Brodribb TJ, 2005. A unique mode of parasitism in the conifer coral tree Parasitaxus ustus (Podocarpaceae). Plant Cell and Environment 28: 1316-1325.
31. Favory J-J, Kobayshi M, Tanaka K, Peltier G, Kreis M, Valay J-G, Lerbs-Mache S, 2005. Specific function of a plastid sigma factor for ndhF gene transcription. Nucleic Acid Research 33: 5991-5999.
32. Bigras FJ, 2005. Photosynthetic response of white spruce families to drought stress. New Forests 29: 135-148.
33. Bertamini M, Muthuchelian K, Rubinigg M, Zorer R, Nedunchezhian N, 2005. Photoinhibition of photosynthesis in leaves of grapevine (Vitis vinifera L. cv. Riesling). Effect of chilling nights Photosynthetica 43: 551-557.
34. Xu Z-Z, Zhou G-S, Li H, 2004. Response of chlorophyll fluorescence and nitrogen level of Leymus chinensis seedling tho changes of soil moisture and temperature. Journal of Environmental Sciences 16: 666-669.
35. Wilson S, Blake C, Berges JA, Maggs CA, 2004. Environmental tolerances of free-living coralline algae (maerl): implications for European marine conservation. Biological Conservation 120: 283-293.
36. Sjögren LLE, MacDonald TM, Sutinen S, Clarke AK, 2004. Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content. Plant Physiology 136: 4114-4126.
37. Salvucci ME, Crafts-Brandner SJ, 2004. Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant Physiology 134: 1460-1470.
38. Romero HM, Berlett BS, Jensen PJ, Pell EJ, Tien M, 2004. Investigations into the role of the plastidial peptide methionine sulfoxide reductase in response to oxidative stress in Arabidopsis. Plant Physiology 136: 3784-3794.
39. Munné-Bosch S, Peñuelas J, Asensio D, Llusià J, 2004. Airborne ethylene may alter antioxidant protection and reduce tolerance of holm oak to heat and drought stress. Plant Physiology 136: 2937-2947.
40. McElrone AJ, Forseth IN, 2004. Photosynthetic Responses of a Temperate Liana to Xylella fastidiosa Infection and Water Stress. Journal of Phytopathology 152: 9-20.
41. Lu Q, Lu C, 2004. Photosynthetic pigment composition and photosystem II photochemistry of wheat ears. Plant Physiology and Biochemistry 42: 395-402.
42. Larbi A, Abadía A, Morales F, Abadía J, 2004. Fe resupply to Fe-deficient sugar beet plants leads to rapid changes in the violaxanthin cycle and other photosynthetic characteristics without significant de novo chlorophyll synthesis. Photosynthesis Research 79: 59-69.
43. Ji B-H, Zhu S-Q, Jiao D-M, 2004. A limited photosynthetic C4-microcycle and its physiological function in transgenic rice plant expressing the maize PEPC gene. Acta Botanica Sinica 46: 542-551.
44. Havaux M, DallOsto L, Cuiné S, Giuliano G, Bassi R, 2004. The effect of zeaxanthin as the only xanthophyll on the structure and function of the photosynthetic apparatus in Arabidopsis thaliana. The Journal of Biological Chemistry 279: 13878-13888.
45. Fujibe T, Saji H, Arakawa K, Yabe N, Takeuchi Y, Yamamoto KT, 2004. A methyl viologen-resistant mutant of Arabidopsis, which is allelic to ozone-sensitive rcd1, is tolerant to supplemental ultraviolet-B irradiation. Plant Physiology 134: 275-285.
46. Ensminger I, Sveshnikov D, Campbell DA, Funk C, Jansson S, Lloyd J, Shibistova O, Öquist G, 2004. Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. Global Change Biology 10: 1-14.
47. DHaese D, Vandermeiren K, Caubergs RJ, Guisez Y, Temmerman LD, Horemans N, 2004. Non-photochemical quenching kinetics during the dark to light transition in relation to the formation of antheraxanthin and zeaxanthin. Journal of Theoretical Biology 227: 175-186.
48. Biemelt S, Tschiersch H, Sonnewald U, 2004. Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiology 135: 254-265.

 

华教壹传媒
关于我们   关于网站   联系我们   网络广告刊例   会员服务   新手入门   法律说明   网站地图   我要投稿   本站招聘
E-mail:[email protected]    地址:北京市海淀区北三环西路11号首都体育学院          中国教育装备采购网官方微博
中国教育装备采购网微信公共号二维码
北京市公安局海淀分局备案第1101083696号 京ICP证050368号 京ICP备05038339号
Copyright ? 2004-2017    www.caigou.com.cn    中国教育装备采购网    版权所有
工信部备案信息  网络110报警服务  北京互联网举报中心